

Humberto Silvino Alves da Costa

Calibração de um Termovisor para Planejamento da Produção

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Metrologia da PUC-Rio. Área de Concentração: Metrologia para Qualidade e Inovação.

Professores Orientadores:

Alcir de Faro Orlando DEM/PósMQI/PUC-Rio

Paulo Roberto da Fonseca Santos INMETRO

Rio de Janeiro Abril de 2007

Humberto Silvino Alves da Costa

Calibração de um Termovisor para Planejamento da Produção

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Metrologia da PUC-Rio. Área de Concentração: Metrologia para Qualidade e Inovação. Aprovada pela Comissão Examinadora abaixo assinada:

Comissão Examinadora:

Alcir de Faro Orlando Orientador

Departamento de Engenharia Mecânica Programa de Pós-Graduação em Metrologia (PósMQI) Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)

Paulo Roberto da Fonseca Santos Coorientador

INMETRO – Instituto de Metrologia, Normalização e Qualidade Industrial

Maria Helena Farias

INMETRO – Instituto de Metrologia, Normalização e Qualidade Industrial

Carlos Eduardo Reuther de Siqueira PETROBRAS

Washington Braga Filho

Departamento de Engenharia Mecânica Programa de Pós-Graduação em Mecânica (PósMEC) Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)

Coordenação Setorial de Pós-Graduação:

Prof. José Eugênio Leal

Coordenador Setorial de Pós-Graduação do Centro Técnico Científico (PUC-Rio)

Rio de janeiro, 30 de abril de 2007

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Humberto Silvino Alves da Costa

Graduou-se em Engenharia Elétrica na UVA (Universidade Veiga de Almeida) em 1984. Cursou Análise de Sistemas no Instituto Brasileiro de Informática em 1991. Engenheiro de planejamento na TECHINT Cia. Técnica Internacional, de 1987 a 1988. Engenheiro Eletricista na Light Serviços de Eletricidade S.A., de 1989 a 2006. A partir de 2006 é Engenheiro Eletricista na Light Energia S.A. pertencendo ao Departamento de Engenharia de Usinas. Coordenou e participou de vários projetos de implantação de Sistemas de Supervisão e Controle Digitais na Light.

Ficha Catalógrafica

Costa, Humberto Silvino Alves da

Calibração de um termovisor para planejamento da produção / Humberto Silvino Alves da Costa ; orientadores: Alcir de Faro Orlando e Paulo Roberto da Fonseca Santos.

– Rio de Janeiro: PUC, Metrologia para Qualidade e Inovação, 2007.

113 f.: il. ;30 cm

Dissertação (Mestrado em Metrologia, Área de concentração: Metrologia para Qualidade e Inovação) – Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2006.

Inclui bibliografia.

 Metrologia – Teses. 2. Termovisor. 3. Calibração.
 Corpo Negro. 5. Manutenção. 6. Emissividade. I.
 Orlando, Alcir de Faro. II. Santos, Paulo Roberto da Fonseca. III. Pontifícia Universidade Católica do Rio de Janeiro. Programa de Pós-Graduação em Metrologia para Qualidade e Inovação. IV. Título.

Dedico este trabalho, aos meus pais, Faustino e Olga, pelo investimento de anos na minha formação e o carinho sempre demonstrado. A minha família, Mônica, Pedro e Paula, que de várias formas me ajudaram e estimularam.

E a meu DEUS, através do seu filho JESUS CRISTO, que planejou e guiou tudo.

Agradecimentos

Aos meus orientadores Professor Alcir de Faro Orlando e Paulo Roberto da Fonseca Santos pelo estímulo e parceria para a realização deste trabalho.

Ao professor Maurício Nogueira Frota, pelas orientações e coleguismo durante o desenvolvimento do mestrado.

A Light Energia S.A., INMETRO e a PUC-Rio, pelos auxílios concedidos, sem aos quais este trabalho não poderia ter sido realizado.

Aos meus colegas e amigos João Vieira, Carla Accioly, Claudionor Fernandes Chaves e José Tenório pelo apoio e companheirismo.

Aos Engenheiros Marlon Max Huamani Bellido, da PUC-Rio, e Renato Nunes Teixeira, do INMETRO, por terem conduzido eficientemente a parte experimental deste trabalho.

Aos professores e doutores que participaram da Comissão examinadora.

A todos os professores e funcionários do PósMQI pelos ensinamentos e ajuda.

Resumo

Costa, Humberto Silvino Alves da; Orlando, Alcir de Faro e Paulo Roberto. Calibração de um termovisor para planejamento da produção. Rio de Janeiro, 2007. 113p. Dissertação de Mestrado – Metrologia para Qualidade e Inovação (PósMQI), Pontifícia Universidade Católica do Rio de Janeiro.

O aumento da temperatura de equipamentos de produção de energia elétrica é um indicativo de seu mau funcionamento ou da necessidade de uma manutenção preventiva antes que limites críticos sejam alcançados. Uma técnica utilizada para o diagnóstico é a interpretação do sinal infravermelho captado por uma câmera que fornece uma imagem do campo visual em questão, normalmente conhecida por termovisor. Neste trabalho foi desenvolvida uma metodologia para interpretar o seu sinal tendo em vista o planejamento de manutenção. Inicialmente, foi projetado um dispositivo para calibração de um termovisor na PUC-Rio. Ele consta de um bloco cilíndrico de latão, imerso em um banho de temperatura controlada. A seguir, o termovisor foi calibrado no corpo negro do INMETRO. Através da comparação entre os valores medidos pelo termovisor na PUC-Rio e no INMETRO, a emissividade da superfície pode ser determinada, e ajustada no instrumento para medição de temperatura com superfícies semelhantes. Com o termovisor calibrado, foi feita uma análise do impacto da incerteza de medição de temperatura sobre os procedimentos atualmente empregados pela concessionária de energia elétrica, LIGHT ENERGIA S.A., de modo a otimizar os procedimentos de manutenção de seus equipamentos.

Palavras-chave

Metrologia; Termovisor; Calibração; Corpo Negro; Manutenção; Emissividade.

Abstract

Costa, Humberto Silvino Alves da; Orlando, Alcir de Faro and Paulo Roberto. Calibration of a thermographic camera for production planning. Rio de Janeiro, 2007. 113p. Dissertação de Mestrado – Metrologia para Qualidade e Inovação(PósMQI), Pontifícia Universidade Católica do Rio de Janeiro.

The operating temperature increase of electric energy production equipments is a sign of poor performance or the need of maintenance before critical limits be attained. As a diagnostic tool, the interpretation of the infrared signal, as received by a camera that registers the image of a target, is often used and referred as a thermographic camera. In this work, a methodology was developed to interpret the infrared signal from a camera, aiming a maintenance planning. Initially, a device was designed to calibrate the thermographic camera at PUC-Rio. It consists of a cylindrical brass block, placed inside a controlled temperature bath, having its upper surface painted black and placed about 3 mm above the liquid surface of the bath. Holes were drilled radially, slightly bellow the block upper surface, so that its temperature could be measured by inserted thermocouples. Next, the instrument was calibrated with a black body at INMETRO. The surface emissivity was calculated as a result of the comparison between the calibration results in PUC-Rio and INMETRO. After calibration, the impact of the uncertainty of several parameters in temperature measurement was calculated, following the procedures that are presently adopted by the electric energy utility company LIGHT ENERGIA S.A., so that to optimize the maintenance procedure of equipments.

Keywords

Metrology; Thermovision; Calibration; Blackbody; Maintenance; Emissivity

Sumário

1.	INT	RODUÇÃO	14
1.	.1.	MOTIVAÇÃO	14
1.	.2.	MONITORAMENTO ATUAL DA TEMPERATURA DOS EQUIPAMENTOS ELÉTRI	cos .15
1.	.3.	Objetivos	28
1.	.4.	ESTRUTURA DA DISSERTAÇÃO	28
2.	FUN	DAMENTOS TEÓRICOS	29
2.	.1.	PRINCIPIO DE MEDIÇÃO DE TEMPERATURA ATRAVÉS DA RADIAÇÃO	29
2.	.1.1.	O INFRAVERMELHO	35
2.	.2.	PRINCÍPIO DE FUNCIONAMENTO DO TERMOVISOR	36
2.	.2.1.	ELEMENTO SENSOR	36
2.	.2.2.	INSTRUMENTO (TRANSDUTOR + CONDICIONAMENTO)	38
2.	.2.3.	CARACTERIZAÇÃO ESTÁTICA	39
2.	.2.4.	Caracterização Dinâmica	42
2.	.2.5.	Aplicações Práticas	42
3.	MA	NUTENÇÃO	47
3.	.1.	Introdução	47
3.	.2.	A Manutenção preditiva	48
3.	.3.	APLICAÇÃO NA MANUTENÇÃO	50
3.	.3.1.	CRITÉRIOS DE AVALIAÇÃO DOS RESULTADOS DAS INSPEÇÕES	52
3.	.3.2.	PERIODICIDADE DA INSPEÇÃO	53
3.	.4.	A TERMOGRAFIA INFRAVERMELHA	54
3.	.5.	PROCESSO DE INSPEÇÃO TERMOGRÁFICA	56
3.	.6.	EQUIPES DE INSPEÇÃO TERMOGRÁFICA	57
3.	.7.	CÂMERA DE TERMOGRAFIA OU TERMOVISOR	57
3.	.8.	UTILIZAÇÃO DO TERMOVISOR NA LIGHT	58
3.	.8.1.	PROCEDIMENTOS DE MEDIÇÃO	58
3.	.8.1.1.	CARACTERÍSTICAS DOS EQUIPAMENTOS	58
3.	.8.1.2.	PARÂMETROS A SEREM EVITADOS OU CORRIGIDOS	59
3.	.8.1.3.	PARÂMETROS QUE SÃO AJUSTADOS NO TERMOVISOR	60
3.	.8.2.	PROCEDIMENTO DE CALIBRAÇÃO	61
3.	.10.	NORMAS APLICÁVEIS:	65
4	PRC	OCEDIMENTO EXPERIMENTAL	66

4	l.1.	CALIBRAÇÃO DO TERMOVISOR USANDO UM CORPO NEGRO	66
4	1.2.	DISPOSITIVO DE TESTE NA PUC-RIO	67
4	1.3.	CALIBRAÇÃO DE TERMOPARES DO TIPO T.	67
4	1.4.	MEDIÇÃO DA EMISSIVIDADE DA SUPERFÍCIE	69
4	1.5.	MEDIÇÃO DA TEMPERATURA COM O TERMOVISOR	71
4	1.6.	MEDIÇÃO INDEPENDENTE DA EMISSIVIDADE	71
5.	RE	SULTADOS	78
5	5.1.	CALIBRAÇÃO DO TERMOVISOR CONTRA O CORPO NEGRO DO INMETRO	78
5	5.2.	MEDIÇÃO DA EMISSIVIDADE DA SUPERFÍCIE NA PUC-RIO	78
5	5.3.	MEDIÇÃO DA TEMPERATURA COM O TERMOVISOR	80
5	5.4.	MEDIÇÃO INDEPENDENTE DA EMISSIVIDADE	82
5	5.5.	COMPARAÇÃO ENTRE RESULTADOS OBTIDOS NA PUC-RIO E NA LIGHT	83
6.	CO	NCLUSÕES	90
7.	RE	VISÃO BIBLIOGRÁFICA E CONCEITUAL	92
7	7.1.	REFERÊNCIAS BIBLIOGRÁFICAS	92
8.	AN	EXO A – CALCULO DA INCERTEZA COMBINADA[20]	95
9.	AN	EXO B – CALCULO DA INCERTEZA EXPANDIDA[21]	97
10.	AN	EXO C – TABELA DE EMISSIVIDADE DAS SUPERFÍCIES	99
11.	AN	EXO D – EMISSIVIDADE X TEMPERATURA DO OBJETO	100
12.	AN	EXO E – IMAGENS DO TERMOVISOR AGEMA SCANNER 487	110
13.		EXO F – CERTIFICADOS DE CALIBRACÃO DA FLIR	

Figuras

FIGURA 1: ESPECTRO ELETROMAGNÉTICO	30
FIGURA 2: EMITÂNCIA ESPECTRAL DE CORPO NEGRO PARA CINCO TEMPERATURAS, LOG X LOG	32
FIGURA 3: EMITÂNCIA ESPECTRAL DE CORPO NEGRO PARA QUATRO TEMPERATURAS, LINEAR	32
Figura 4: Emissividade espectral de superfície: dependência com $\pmb{\lambda}$ e T	34
FIGURA 5: DEPENDÊNCIA TÍPICA DA RESISTÊNCIA ELÉTRICA DOS METAIS E DOS SEMICONDUTORES CO	OM A
TEMPERATURA.	37
FIGURA 6: CIRCUITO DE POLARIZAÇÃO DE UM BOLÔMETRO	38
FIGURA 7: DIAGRAMA PARA AQUISIÇÃO DO SINAL BOLOMÉTRICO	39
FIGURA 8: DESEMPENHO DE DIFERENTES DETECTORES, TÉRMICOS E QUÂNTICOS	46
FIGURA 9: COMPONENTES DEFEITUOSOS DETECTADOS PELA INSPEÇÃO TERMOGRÁFICA EM FURNAS E	CHESF 50
Figura 10: Elementos básicos da estrutura de um termovisor	56
Figura 11: Espectro eletromagnético	57
Figura 12: Termovisor	58
Figura 13: Tela do termovisor da Light com a configuração existente	61
FIGURA 14: EMISSIVIDADE ESPECTRAL DO CORPO NEGRO MIKRON M315X8, MEDIDA PELO NIST .	64
FIGURA 15: MONTAGEM DO DISPOSITIVO PARA CALIBRAÇÃO DO TERMOVISOR	68
Figura 16: Transferência de calor por radiação entre dois cilindros infinitos concêntr	ıcos72
FIGURA 17: DISPOSITIVO EXPERIMENTAL PARA MEDIÇÃO DA EMISSIVIDADE, PUC-RIO	73
Figura 18 - Esquema de medição dos termopares	75
Figura 19 - Posição dos termopares tipo "T" nos cilindros	76
Figura 21: Transformadores de corrente	84
Figura 22 - Transformador de corrente danificado pela alta temperatura	85
FIGURA 23: IMAGEM TERMOGRÁFICA DO TRANSFORMADOR DE CORRENTE UTILIZANDO O TERMOVISO	OR DA PUC-
Rto	86
FIGURA 24: IMAGEM TERMOGRÁFICA DO TRANSFORMADOR DE CORRENTE UTILIZANDO O TERMOVISO	r da Light
	86
FIGURA 25: TEMPERATURA DO OBJETO X EMISSIVIDADE	88
FIGURA 26: TEMPERATURA DO OBJETO X DISTÂNCIA ENTRE OBJETO E TERMOVISOR	89
FIGURA 27: CÂMERA DO CONJUNTO DO TERMOVISOR AGEMA SCANNER 487	110
EIGUDA 20: INTERPACE DA CÂMERA DO TERMONICOR ACEMA SCANNER 497	110

TABELAS

TABELA 1 - ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS	18
Tabela 2 - Light Energia S/A	18
Tabela 3 - CELG - Companhia Energética de Goiás	18
Tabela 4 - Classes de temperatura.	21
Tabela 5 - Diferença entre as classes de temperatura	21
Tabela 6 - Transformadores resfriados a ar	21
Tabela 7- Transformadores resfriados a água	22
Tabela 8 – Fator de multiplicação x Temperatura ambiente	25
Tabela 9 – Limites de elevação de temperatura (NBR 5356)	26
Tabela 10 – Limites de elevação de temperatura (NBR 6855)	27
Tabela 11 - Normas LIGHT x ABNT	27
Tabela12: Emissividade das superfícies	99
Tabela 13: Divisão da região infravermelha	36
TABELA 14: COEFICIENTES DO AJUSTE E INCERTEZA DE MEDIÇÃO DOS TERMOPARES TIPO T	44
Tabela 15: Periodicidade da inspeção	53
Tabela 16: Correção da velocidade do vento	59
TABELA 17: PADRÕES "CORPOS NEGROS" UTILIZADOS NA CALIBRAÇÃO	63
TABELA 18: COEFICIENTES DO AJUSTE E INCERTEZA DE MEDIÇÃO DOS TERMOPARES TIPO T	69
Tabela 19: Fatores de forma e resistências	76
TABELA 20: TEMPERATURA DA PLACA MEDIDA COM TERMOPARES TIPO T, NO DISPOSITIVO DA PUC-RIO	79
TABELA 21: EMISSIVIDADE DA SUPERFÍCIE COMO FUNÇÃO DA TEMPERATURA, DISPOSITIVO DA PUC-RIO	80
Tabela 22: Incerteza de medição da temperatura com o termovisor. 1° Conjunto de dados	81
Tabela 23: Incerteza de medição da temperatura com o termovisor. 2^{0} Conjunto de dados	81
Tabela 24: Incerteza de medição da temperatura com o termovisor. 3° Conjunto de dados	82
Tabela 25: Medição da emissividade	82
Tabela 26: Tambiente =20 °C; Distância do objeto - termovisor = 2 m	. 100
Tabela 27: Tambiente =22 °C; Distância do objeto - termovisor = 2 m	. 100
Tabela 28: Tambiente =24 °C; Distância do objeto - termovisor = 2 m	. 101
Tabela 29: Tambiente =26 °C; Distância do objeto - termovisor = 2 m	. 101
Tabela 30: Tambiente =28°C; Distância do objeto - termovisor = 2 m	. 102
Tabela 31: Tambiente =30 °C; Distância do objeto - termovisor = 2 m	. 102
Tabela 32: Tambiente =32 °C; Distância do objeto - termovisor = 2 m	. 103
Tabela 33: Tambiente =20 °C; Emissividade no termovisor = 1	. 103
Tabela 34: Tambiente =22 °C; Emissividade no termovisor = 1	. 104

ΓABELA 35: TAMBIENTE =24 °C; EMISSIVIDADE NO TERMOVISOR = 1	104
Tabela 36: Tambiente =20 °C; Emissividade no termovisor = 0,99	105
Tabela 37: Tambiente =22 °C; Emissividade no termovisor = 0,99	105
Tabela 38: Tambiente =24 °C; Emissividade no termovisor = 0,99	106
Tabela 39: Tambiente =20 °C; Emissividade no termovisor = 0,98	106
Tabela 40: Tambiente =22 °C; Emissividade no termovisor = 0,98	107
ΓABELA 41: TAMBIENTE =24 °C; EMISSIVIDADE NO TERMOVISOR = 0,98	107
ΓABELA 42: TAMBIENTE =20 °C; EMISSIVIDADE NO TERMOVISOR = 0,97	108
Tabela 43: Tambiente =22 °C; Emissividade no termovisor = 0,97	108
ΓABELA 44: TAMBIENTE =24 °C: EMISSIVIDADE NO TERMOVISOR = 0.97	109